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Two-dimensional experimental simulation of polymers in annealed disordered media
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We model the motion of polymers in random media by chains of connected disks placed on an air stream
table. The dynamic disorder is modeled by placing light disks on the table, which move in a random manner.
We analyze the variation of the mean radius of gyration,^Rg&, with the chain lengthN for different densities
of mobile disks, finding that̂Rg&;Nn wheren50.6860.03 for all densities.@S1063-651X~98!08803-5#

PACS number~s!: 36.20.Ey, 05.90.1m, 82.20.Wt
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The behavior of polymer chains in disordered media
been an active field of research for many years, since
both a simple to state but far from trivial problem of stat
tical physics with external disorder, and a field with num
ous practical applications@1–3#. Among these, we cite poly
mer transport through microporous membranes,
permeation chromatography, viscoelasticity of polymer so
tions, and so on. The main theoretical approach to the p
lem of polymers in random environments has been tha
the self-avoiding walk~SAW! @4–23#. Despite the major ef-
fort that has gone into this work, both numerically and an
lytically, fundamental open questions still linger on. We co
centrate in this paper on the radius of gyration of t
polymers,^Rg&. This is related to the number of monome
N or the length of the SAW by a power law

^Rg&;Nn. ~1!

If the polymer~SAW! does not interact with its environmen
the exponentn5n0 is known to be 3/4 in two dimension
@1#. However, when there are interactions the behavior on
is less clear. Kremer@4# argued that quenched disorder do
not affectn as long as the disorder is less than the perco
tion threshold. Baumga¨rtner and Muthukumar@24# studied
numerically polymers in three dimensions withouta priori
assuming self-exclusion in an environment of fixed o
stacles, i.e., quenched disorder. They concluded that the
a transition between a Gaussian phase, where^Rg&;N1/2 and
a collapsed phase where^Rg& is independent ofN when the
number of obstacles is increased. This work was followed
by Edwards and Muthukumar@10# who studied the same
system analytically in turn further refined by Cates and B
@25# and Nattermann and Renz@26#. Cates and Ball also
discuss the annealed-disorder case, and find through a F
argument thatn51/4 in the collapsed phase. Thirumalai@27#
argued based on analytical arguments that in three dim
sionsa priori self-avoiding polymers do not have the sam
behavior as the free SAW when in the presence of w
annealed disorder. When the disorder is increased, the p
mers undergo a transition to a collapsed state. Similar c
clusions, valuable for two and three dimensions, but w
quenched disorder, were drawn by Machta and Guyer@15#
using a Flory approach. Honeycutt and Thirumalai@21# stud-
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ied numerically the problem of anchored and nonancho
polymers in two-dimensional surroundings with annea
disorder, suggesting thatn52/3 when anchored and smalle
value, 1/6 or 1/8 depending on the disorder, if nonanchor
Le Doussal and Machta@22# on the other hand use argu
ments based on renormalization group theory to argue
n,n0 for nonanchored polymers andn.n0 for anchored
polymers, both subject to annealed disorder. Cherayil@28#
used renormalization group methods to study polymers w
out a priori self-exclusion in both annealed and quench
disorder. A transition between a collapsed phase and a p
dominated by self-avoidance was found, i.e.,n5n0. Both
types of disorder—quenched or annealed—gave rise to
same asymptotic behavior. Obukhov@20# argued that self-
avoiding polymers in two dimensions and quenched disor
are dominated by the self-avoidance, so thatn5n053/4. Wu
et al. @29# studied numerically polymers withouta priori
self-exclusion in a two-dimensional environment with a
nealed disorder, but argue that the results are also valid
quenched disorder. They find a value forn close to 1/4,
which is the Flory value. Geroffet al. @30# studied numeri-
cally three-dimensional self-avoiding polymers movin
among fixed obstacles, i.e., quenched randomness. The s

FIG. 1. A schematic drawing of the air stream table.
3656 © 1998 The American Physical Society
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FIG. 2. Images showing different configurations of the chain~white! for two densities of disks~black!: ~a! N54 and~b! N519 for C
52.5% and~c! N511 and~d! N528 for C520%.
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properties of the polymers remained unaffected by the di
der. In an ‘‘experimental simulation,’’ Tasserieet al. @31#
have modeled nonanchored polymers interacting with
quenched disordered medium on an air table. They founn
50.6860.03, seemingly independent of the densities of
objects forming the environment. Grassberger@32# simulated
two-dimensional self-avoiding polymers in quenched ra
dom environments, findingn50.78360.003, in contradic-
tion to the results of Tasserieet al. He also shows that ther
is a significant difference between the quenched and
nealed disorder cases.

We report here an experimental study of the radius
gyration, ^Rg&, of a two-dimensional self-avoiding chai
moving randomly in an environment with annealed disord
The chain is placed on an air stream table built to stu
random two-dimensional systems@33#. It consists of a hori-
zontal sintered bronze plate of size 50350 cm2 and thick-
ness 5 mm. The plate is placed at the exit of a long vert
wind tunnel. Thus, the air flow~laminar and homogeneous!
moves through the porous table, see Fig. 1. The air flow
be controlled by regulating a rheostat connected to two f
at the bottom of the wind tunnel. The fan power is linea
related to the air flow velocity and it was found that veloc
profiles show a satisfactory overall uniformity at 150 V~air
velocity of 30 cm/s!. All experiments were performed unde
r-
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the same conditions. At the other side of the plate, the flow
homogeneously turbulent on a small scale. This turbule
agitates both the chain and the disks that are placed on
table to simulate the random environment. These disks h
a diameter of 8 mm and a thickness of 1 mm. They

FIG. 3. Radius of gyrationRg ~in pixels! as a function of time
~in s! for N511 in a disordered medium of densityC52.5%.
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suspended above the work surface due to the air stream
move in a random fashion on the air table. This randomn
is caused by the turbulent component of the flow field a
the geometrical defects of the disks causing instabilities
do collisions between the disks. The disks, however, do
form a gas in a thermodynamic sense, but rather a dri
dissipative system~kinetic energy is essentially dissipate
during collisions!. Energy is furnished by the air flow. Be
cause of the lack of equipartition—clearly put in eviden
when studying mixtures of disks with two differen
diameters—no temperature can be assigned to the gas. H
ever, we may define a pseudotemperatureT* , which is a
decreasing function of the number of disks@34#. The poly-
mers are modeled by a chain of the disks described ab
The disks are held together by a very thin silk thread glue
the center of each disk. Let us remark that the silk thre
must be as thin as possible as the stiffness of the thread
easily dominate the individual agitations of the disks. T
has been verified by Tasserieet al. @31#. In these conditions
the interactions between chain and gas are only due to c
sions. In order to study the dynamical behavior of the cha
we record the images with a black and white videocam
placed 2 m above the porous bronze plate. This camer
connected to a work station. An image analyzer~VISILOG
4.0! allows us to record image sequences and to treat t
automatically in order to obtain the different parameters. T
disks forming the chains are white and disks constituting
disordered medium are black: each image acquisition is
binarized in order to insulate the chain from its environme
Figure 2 shows 4 images of some typical configuratio
taken by a chain of~a! N54 and~b! N519 into a gas par-
ticles of densityC52.5% and~c! N511 and~d! N528 in a
gas of densityC520% (N is the number of bonds andC is
the area occupied by disks divided by total area of the w
surface!. To obtain the radius of gyrationRg we compute
coordinates corresponding to the mass center and then
second moments for a large number of decorrelated confi
rations on the time. 200 configurations were recorded
each chain with time intervals varying from 7 to 120 s~for
the longest chains!. These intervals were sufficiently long t
ensure that correlations between consecutive configurat

FIG. 4. Normalized distributions of the radius of gyrationRg for
a polymer length ofN519 for C52.5% andC520%.
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were negligible. Figure 3 shows a typical variation of t
radius of gyrationRg as a function of time forN511 and for
a density of objectsC52.5%. In this experiment,Rg has
been computed roughly every 11 s. The mean radius of
ration ^Rg& is then obtained by averagingRg over all the
configurations (̂Rg&520.6 in Fig. 3!. In Fig. 4 we show the
normalized distributions of the mean radius of gyration fo
polymer of lengthN519 and for two densities of objects
C52.5% ~in white! and 20% ~in black!. The histograms
show that the distribution is largest at small densityC of
mobile obstacles. At highest density, the high number
objects keep the polymer from having stretched configu
tions. The mean value is more frequent at higher density t
at the slower one. We have performed experiments for f
densitiesC of objects of the gas particles: 2.5%, 5.5%, 10
and 20% and for chain lengths of number of bonds vary
from N52 to 28. Figure 5 shows the experimental resu
obtained for the four densities of gas particles. We have p
ted the logarithm of the mean radius of gyration^Rg& as a
function of the logarithm chain lengthN. We observe a lin-
ear variation corresponding to a power behavior betw
^Rg& and the length chainN, which is in good agreemen
with Eq. ~1!. The slopes of different curves are obtained
computing linear regressions over the experimental data
the four densities of disks:~1! C52.5%, n50.66; ~2! C
55.5%, n50.66; ~3! C510%, n50.69; ~4! C520%, n
50.68. All the exponents are close to each other, and ma
summarized asn50.6860.03~where the error is statistical!.
Within the quite limited range of chain lengths and densit
C, the exponent seems universal. The exponent is sm
than n053/4, the free SAW value, and indistinguishab
from that obtained by Tasserieet al. who studied chains
moving on the air flow table, but where the disorder w
quenched in that the disks were fixed.
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ported by a grant from the GdR ‘‘Physique des Milieux He´t-
érogènes Complexes.’’ Further support was provided by
PICS grant from the CNRS and the NFR.

FIG. 5. Linear variation of the logarithm of^Rg& as a function
of the logarithm ofN for different densitiesC: From bottom to top
the curves represent~a! C52.5%, n50.66; ~b! C55.5%, n
50.66; ~c! C510%,n50.69; ~d! C520%,n50.68.
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